Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

A three-dimensional open-framework zinc arsenate, $(C_4H_{12}N_2)_2[Zn_7(AsO_4)_6(H_2O)_2]$

Kjell Ove Kongshaug et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

A three-dimensional open-framework zinc arsenate, $(C_4H_{12}N_2)_2$ - $[Zn_7(AsO_4)_6(H_2O)_2]$

Kjell Ove Kongshaug,* Helmer Fjellvåg and Karl Petter Lillerud

Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway

Correspondence e-mail: k.o.kongshaug@kjemi.uio.no

Received 7 September 2000 Accepted 28 September 2000

Data validation number: IUC0000280

The title compound, dipiperazinium heptazinc hexakis(arsenate) dihydrate, is built from vertex-sharing AsO_4 tetrahedra, ZnO_4 tetrahedra and ZnO_5 trigonal bipyramids. The connectivity between these polyhedra give rise to an open framework with eight-ring channels along the crystallographic [001] and [011] directions. The piperazinium cations are located within these channels.

Comment

Compared to silicate and phosphate open-framework structures, rather little is known about similar arsenate structures. Open-framework arsenate structures incorporating organic cations in channels and cavities include two aluminoarsenates (Yang et al., 1989; Li et al., 1991), one galloarsenate (Chen et al., 1989), one molybdenum arsenate (Wang et al., 1994), two iron arsenates (Ekambaram & Sevov, 2000) and two zinc arsenates (Gier et al., 1998; Bu et al., 1998). The present paper describes the synthesis and crystal structure of a new zinc arsenate, (C₄H₁₂N₂)₂[Zn₇(AsO₄)₆(H₂O)₂], refined from singlecrystal data. Its crystal structure is isostructural with a zinc phosphate denoted UiO-17 (Kongshaug et al., 1999). The three-dimensional anionic framework is made up of vertexsharing AsO₄ tetrahedra, ZnO₄ tetrahedra and ZnO₅ trigonal bipyramids. It can be described in terms of sheets parallel to (100) that consist of edge-sharing three-, four- and six-rings. These sheets are connected via As2O₄ and Zn4O₄ tetrahedra to form an open framework with a two-dimensional eight-ring channel system along [001] and [011]. The piperazinium cations are located within these channels. The framework is interrupted with a terminal Zn3-OH₂ bond, and two out of twelve framework O atoms (O3 and O9) are three-coordinated (1 As + 2 Zn). A bond-valence analysis (Brown & Altermatt, 1985) confirmes the expected oxidation states of Zn and As as +2 and +5 for all the relevant atoms. This analysis further revealed that atoms O1, O4, O5, O7 and O12

all have bond-valence sums significantly lower than the expected value of 2. Their valences are, however, fulfilled by mean of hydrogen-bonding contributions from the piperazinium cations and water molecules $[d(H1\cdots O4^i) = 2.09, d(H2\cdots O7^{ii}) = 1.93, d(H3\cdots O5^{iii}) = 2.02, d(H4\cdots O12^{iv}) = 1.78, d(H13\cdots O12^v) = 1.89$ and $d(H14\cdots O1^i) = 1.97$ Å; symmetry codes: (i) $x, 1 - y, z - \frac{1}{2}$; (ii) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iv) $1 - x, y, \frac{1}{2} - z$; (v) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$].

Experimental

The title compound was prepared hydrothermally from a mixture of zinc acetate, arsenic acid, piperazine and water in the molar ratio 2:2:1.5:50. The resulting mixture was heated at 453 K for 48 h in a teflon-lined steel autoclave, then filtered, washed and dried at room temperature. Powder X-ray analysis indicated the product to be a mixture of adamite, $Zn_2(OH)PO_4$ (Hawthorne, 1976) and the title compound. Examination under an optical microscope showed two different crystal morphologies, *i.e.* plate and cube-shaped crystals. Isolation of suitable crystals of each type and subsequent X-ray diffraction analyses showed the crystalline plates to be the title compound and the cubes to be adamite.

Crystal data

N

si ystat aata	
$C_4H_{12}N_2)_2[Zn_7(AsO_4)_6(H_2O)_2]$	$D_x = 3.179 \text{ Mg m}^{-3}$
$M_r = 1503.455$	Mo $K\alpha$ radiation
Aonoclinic, C2/c	Cell parameters from 3669
a = 16.5880 (14) Å	reflections
p = 8.3559 (7) Å	$\theta = 3.0-27.5^{\circ}$
e = 23.4129 (18) Å	$\mu = 11.636 \text{ mm}^{-1}$
$B = 104.564 \ (4)^{\circ}$	T = 150 (2) K
$V = 3140.9 (4) \text{ Å}^3$	Plate, colourless
Z = 4	$0.40 \times 0.10 \times 0.05 \text{ mm}$

3602 independent reflections

2639 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.079$

 $\theta_{\rm max} = 27.52^{\circ}$

 $h = -21 \rightarrow 21$

 $k = -10 \rightarrow 10$

 $l = -30 \rightarrow 30$

Data collection

- Siemens SMART CCD diffractometer Sets of exposures each taken over $0.6^{\circ} \omega$ rotation scans Absorption correction: empirical (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.26, T_{\max} = 0.55$
- 17 378 measured reflections

Refinement

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_o^2) + (0.0275P)^2]$
$wR(F^2) = 0.065$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.947	$(\Delta/\sigma)_{\rm max} = 0.001$
3602 reflections	$\Delta \rho_{\rm max} = 0.87 \ {\rm e} \ {\rm \AA}^{-3}$
273 parameters	$\Delta \rho_{\rm min} = -0.92 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn3-O10 ⁱ	1.940 (4)	Zn3-O12	2.090 (4)
Zn3-O8	1.942 (4)	Zn3-O3 ⁱⁱ	2.282 (4)
Zn3–OW	1.995 (4)		
$O10^i - Zn3 - O8$	134.22 (17)	OW-Zn3-O12	97.00 (16)
$O10^{i}$ -Zn3-OW	108.83 (17)	O10 ⁱ -Zn3-O3 ⁱⁱ	89.12 (15)
O8-Zn3-OW	116.77 (17)	O8-Zn3-O3 ⁱⁱ	88.56 (14)
O10 ⁱ -Zn3-O12	84.50 (15)	OW-Zn3-O3 ⁱⁱ	87.97 (15)
O8-Zn3-O12	93.67 (15)	O12-Zn3-O3 ⁱⁱ	172.91 (15)

Symmetry codes: (i) $\frac{1}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$; (ii) $x, 1 - y, z - \frac{1}{2}$.

The positions of the H atoms were refined with a common constant isotropic displacement parameter of 0.02 Å^2 [C-H 0.85 (7)-0.96 (7) Å and N-H 0.79 (7)-0.93 (7) Å].

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1994); program(s) used to refine structure: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Bu, X. H., Feng, P. Y., Gier, T. E. & Stucky, G. D. (1998). J. Solid State Chem. 136, 210–215.
- Chen, J. S., Li, L., Yang, G. D. & Xu, R. R. (1989). Chem. Commun. pp. 1217– 1218.

Ekambaram, S. & Sevov, S. C. (2000). Inorg. Chem. 39, 2405–2410.

Gier, T. E., Bu, X. H., Feng, P. Y. & Stucky, G. D. (1998). Nature, 395, 154–157.

- Hawthorne, F. C. (1976). Can. Mineral. 14, 143-149.
- Kongshaug, K. O., Fjellvåg, H. & Lillerud, K. P. (1999). J. Mater. Chem. 9, 3119–3123.

Li, L., Wu, L. X., Chen, J. S. & Xu, R. R. (1991). Acta Cryst. C47, 246-249.

- Sheldrick, G. M. (1994). SHELXTL. Version 5. Siemens Analytical X-ray
- Instruments Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
- Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, S. L., Hsu, K. F. & Nich, Y. P. (1994). J. Chem. Soc. Dalton Trans. pp. 1681–1684.
- Yang, G. D., Li, L., Chen, J. S. & Xu, R. R. (1989). Chem. Commun. pp. 810-811.